Solar Energy

Another method of thermal energy conversion is found in solar ponds, which are bodies of saltwater designed to collect and store solar energy. The heat extracted from such ponds enables the production of chemicals, food, textiles, and other industrial products and can also be used to warm greenhouses, swimming pools, and livestock buildings. Solar ponds are sometimes used to produce electricity through the use of the organic Rankine cycle engine, a relatively efficient and economical means of solar energy conversion, which is especially useful in remote locations. Solar ponds are fairly expensive to install and maintain and are generally limited to warm rural areas.

 

On a smaller scale, the Sun’s energy can also be harnessed to cook food in specially designed solar ovens. Solar ovens typically concentrate sunlight from over a wide area to a central point, where a black-surfaced vessel converts the sunlight into heat. The ovens are typically portable and require no other fuel inputs.

Electricity Generation

Solar radiation may be converted directly into electricity by solar cells (photovoltaic cells). In such cells, a small electric voltage is generated when light strikes the junction between a metal and a semiconductor (such as silicon) or the junction between two different semiconductors. (See photovoltaic effect.) The power generated by a single photovoltaic cell is typically only about two watts. By connecting large numbers of individual cells together, however, as in solar-panel arrays, hundreds or even thousands of kilowatts of electric power can be generated in a solar electric plant or in a large household array. The energy efficiency of most present-day photovoltaic cells is only about 15 to 20 percent, and, since the intensity of solar radiation is low to begin with, large and costly assemblies of such cells are required to produce even moderate amounts of power.

Concentrated solar power plants employ concentrating, or focusing, collectors to concentrate sunlight received from a wide area onto a small blackened receiver, thereby considerably increasing the light’s intensity in order to produce high temperatures. The arrays of carefully aligned mirrors or lenses can focus enough sunlight to heat a target to temperatures of 2,000 °C (3,600 °F) or more. This heat can then be used to operate a boiler, which in turn generates steam for a steam turbine electric generator power plant. For producing steam directly, the movable mirrors can be arranged so as to concentrate large amounts of solar radiation upon blackened pipes through which water is circulated and thereby heated.

1/6
©Copyright Sonnens Energy ® All Rights Reserved.